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The Bhatia–Thornton concentration–concentration partial structure factor SCC(q) is a
strong indicator of the order in liquid alloys. Manganese is one of the four metals,
which has a negative neutronic scattering length, while the antimony one is positive.
Thus for a defined composition (Mn60Sb40) the linear combination of the two neutronic
scattering lengths weighted by the atomic compositions is zero (zero alloy). We present
here the results of neutron diffraction on the Mn60Sb40 ‘‘null matrix’’ alloy at 950

�C,
which is proportional to the Bhatia–Thornton SCC(q) (‘‘null matrix’’ method). The
total structure factor of Mn40Sb60 at 800

�C has also been measured. The main peak
of the experimental SCC(q) is a proof of a strong chemical order in this alloy. This
order is confirmed in the real space by the Fourier transform of the structure factor.
To interpret our experimental results, one generally uses effective potentials determined
with the pseudopotential formalism. But transition metal pseudopotentials are not easy
to handle especially in alloys. We used different simple effective potential models: hard
spheres with constant diameters, hard spheres with composition dependent diameters,
shouldered hard spheres models. We first show that the hard sphere model cannot repro-
duce the experimental results if we postulate that the hard sphere diameters do not
change on alloying. Then we fit the hard sphere diameters on the experimental structure
factor of the alloy. This schema can correspond physically to a charge transfer between
the two components. We show that it can no more explain the experiment. The addition
of attractive and (or) repulsive contributions to the different interatomic potentials give
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satisfactory results. The best results are obtained with attractive contributions between
unlike atoms and repulsive ones between identical atoms. We have also shown that
the parameters obtained for Mn60Sb40 give also good results for the structure factor
at a second composition: Mn40Sb60.

Keywords: ‘‘Null-matrix’’ method; Heterocoordination; Interatomic potential; liquid
alloy; atomic structure; Mn–Sb

1 INTRODUCTION

The electrical resistivity of liquid Mn–Sb alloys was measured by

Gasser and Kleim [1] and more recently the thermopower by

Benazzi [2]. The resistivity presents a maximum (250 m� cm) and a

negative temperature coefficient for a 40 at.% antimony composition.

In the frame of the extended Faber–Ziman theory of Dreirach et al.

[3], the resistivity is expressed as an integral of the product of two fac-

tors more or less independent: the form factor and the structure factor

(weighted by a q3 term) which may explain this maximum. The first

effect comes from the metals form factors and their behaviour versus

concentration. The second arises from the structure factor with a

short-range order, which can be characterised by the Bhatia–

Thornton concentration–concentration partial structure factor

SCC(q). With the neutronic scattering length of manganese and anti-

mony, the experimental total structure factor S(q) is directly propor-

tional to the Bhatia–Thornton partial structure factor SCC(q) at

40 at.% concentration of antimony [4], where the maximum of the

resistivity is also found. The relation is SðqÞ ¼ SCCðqÞ=ðð1� c2Þ c2Þ

(c2¼ 0.4 is the antimony concentration). This is the so-called

‘‘NULL MATRIX’’ METHOD which has been used by

Ruppersberg and Reiter for the lithium lead alloy [5]. Measurements

have been done on the two axis spectrometer 7C2 built on the hot

source of the reactor Orphée of the LLB at Saclay. We measured

the structure factors of Mn60Sb40 at 950�C and of Mn40Sb60 at

800�C. In Section 2, we present the relations between the alloy total

structure factor and the partial structure factors and the relations

between partial structure factors aij(q) and partial pair correlation

functions gij(r). We recall also the relationship between the effective

ion–ion potentials and the structure of liquid alloys. The experimental

setup, standard corrections and manganese magnetic scattering cor-
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rection method are briefly described in Section 3. In Section 4,

the experimental results are presented, discussed and compared to

those obtained from the hard spheres and from the shouldered ion–

ion potentials.

2 THEORY

2.1 Structure Factors and Pair Correlation Functions

We measure a total alloy structure factor Stot(q) that is bound to three

sets of partial structure factors:

StotðqÞ ¼
c1b

2
1S11ðqÞ þ 2

ffiffiffiffiffiffiffiffiffi
c1c2

p
b1b2S12ðqÞ þ c2b

2
2S22ðqÞ

c1b
2
1 þ c2b

2
2

, ð1Þ

where c1, c2, b1, b2 are respectively the concentrations and the neutron

scattering lengths of each metal. Sij(q) are the Ashcroft–Langreth par-

tial structure factors [6]. We have also:

StotðqÞ � 1 ¼
c21b

2
1ða11ðqÞ � 1Þ þ 2c1c2b1b2ða12ðqÞ � 1Þ þ c22b

2
2ða22ðqÞ � 1Þ

c1b
2
1 þ c2b

2
2

:

ð2Þ

The aij(q) are the Faber–Ziman partial structure factors [7] and are

connected to the partial pair correlation functions gij(r) by:

gijðrÞ � 1 ¼ hijðrÞ ¼
1

2�2�0r

Z 1

0

qðaijðqÞ � 1Þ sinðqrÞ dr, ð3Þ

where �0 is the average number density.

The Eqs. (2) and (3) permit us to introduce the total pair correlation

function gtot(r) whose expression is:

gtotðrÞ � 1 ¼
c21b

2
1ðg11ðrÞ � 1Þ þ 2c1c2b1b2ðg12ðrÞ � 1Þ þ c22b

2
2ðg22ðrÞ � 1Þ

c1b
2
1 þ c2b

2
2

:

ð4Þ
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The total structure factor Stot(q) can also be written:

StotðqÞ ¼

ðc1b1þ c2b2Þ
2SNNðqÞþ2ðc1b1þ c2b2Þðb1�b2ÞSNCðqÞþ ðb1�b2Þ

2SCCðqÞ

c1b
2
1þ c2b

2
2

:

ð5Þ

SNN(q), SNC(q) and SCC(q) are the Bhatia–Thornton partial structure

factors [4]. When the quantity c1b1þ c2b2 is equal to 0, it can be

shown that StotðqÞ ¼ SCCðqÞ=ðc1c2Þ. The structure factor SCC(q) repre-

sents the fluctuations around the mean value c1c2 and can be written in

function of the Faber–Ziman partial structure factors:

SCCðqÞ ¼ c1c2ð1þ c1c2ða11ðqÞ þ a22ðqÞ � 2a12ðqÞÞÞ: ð6Þ

The Fourier transform of Stot(q) is given by:

1

2�2�0rc1c2

Z 1

0

q
SCCðqÞ

c1c2
� 1

� �
sinðqrÞ dr ¼ g11ðrÞ þ g22ðrÞ � 2g12ðrÞ

¼
gCCðrÞ

ðc1c2Þ
2
: ð7Þ

The quantity g11ðrÞ þ g22ðrÞ � 2g12ðrÞ represents the difference between

the homocoordination and the heterocoordination and indicates the

nature of the chemical order in the alloy. In our case, the neutron scat-

tering lengths of manganese and antimony are respectively equal to

�3.730 and 5.641 fm, c1b1 þ c2b2 ¼ 0 for exactly c2¼ 0.3981 which is

the ‘‘zero alloy’’. Only four ‘natural’ metals have a negative scattering

length: lithium, titanium, vanadium and manganese. Thus, the study

of alloys containing such a metal presents a strong interest but has

not often been used [5].

2.2 Relations between the Structure and the Potential

In the alloys, the correlation functions are related by gijðrÞ ¼ hijðrÞ þ 1

and are given by the Ornstein–Zernike [8] equation:

hijðrÞ ¼ cijðrÞ þ
X2
k¼1

�k

Z 1

0

cik ~rr� ~rr0
�� ��� �

hkjðrÞ d
3~rr0 i, j ¼ 2, ð8Þ
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where �k is the average number density of k-type atoms. The cij(r) are

the direct correlation functions between i and j particles, the second

term of formula (8) describes the correlation between i and j through

all atoms in the alloy. This equation can be written in the qmomentum

space:

hijðqÞ ¼ cijðqÞ þ
X2
k¼1

�kcikðqÞhkjðqÞ i, j ¼ 2, ð9Þ

Many equations can be used to link approximately the correlation

functions to the ion–ion potentials vij(r). For simple ion–ion effective

potentials, it is convenient to use the Percus–Yevick equation [9]:

gijðrÞ 1� exp
vijðrÞ

kBT

� �
¼ cijðrÞ: ð10Þ

The structure of liquid metals has been calculated numerically by using

the pseudopotential method. However, this method is not suitable to

describe transition metals like manganese. To our knowledge, the

direct correlation functions have been calculated with an analytical

method for alloys only for few simple potentials: hard sphere poten-

tials [6], Silbert–Young [10] potentials by Gopala Rao [11] and

Yukawa potentials by Hafner et al. [12] (but only with equal hard

sphere diameters). The Silbert–Young potential [10] permits to correct

the hard sphere potential (which is the main effect) either by an attrac-

tion or by a repulsion between i and j particles. For a hard sphere pair

potential, the function cij(r) was determined for alloys by Lebowitz [13]

and used by Ashcroft and Langreth [6]

vijðrÞ ¼
1 r < �ij
0 r > �ij

	
, ð11Þ

�cHS
ij ðrÞ ¼

ai

aij þ bijrþ dr3 þ
fij
r

0

8><
>:

	ij > r > 0
	ij < r < �ij
�ij < r

, ð12Þ
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�ii are the hard sphere diameters of the ith type metallic ion in the

alloy, �i are the hard sphere diameters of the pure metal. We have also:

�ij ¼ ð�ii þ �jjÞ=2, 	ij ¼ ð�jj � �iiÞ=2, aij ¼ ðai þ ajÞ=2,

and bij ¼ ðbi þ biÞ=2:
ð13Þ

For a Silbert–Young pair potential, cij(r) was given for alloys by

Gopala Rao and Satpathy [11]. This model has been used by some of

us [14] to explain the prepeak of the ternary Al–Ni–Si alloys.

vijðrÞ ¼
1

"ij
0

8<
: cHS

ij ðrÞ ¼
cHS
ij ðrÞ �ij > r
�vijðrÞ=kBT ¼ �"ij=kBT �ij < r < Aij�ij
0 Aij�ij < r

8<
: :

ð14Þ

It is well known that the interatomic potentials of metals have an

oscillatory behaviour. In this work, we find necessary to add a

second contribution identical to the first one, which is of the opposite

sign. We called this potential ‘‘Double Step’’ potential. We obtain:

vijðrÞ ¼

1

"ij
"0ij
0

8>>><
>>>:

cHS
ij ðrÞ ¼

cHS
ij ðrÞ �ij > r

�vijðrÞ=kBT ¼ �"ij=kBT �ij < r < Aij�ij
�v0ijðrÞ=kBT ¼ �"0ij=kBT Aij�ij < r < A0

ij�ij
0 A0

ij�ij < r

8>>><
>>>:

:

ð15Þ

The possible shapes for this potential are represented on Figs. 1 and 2

where we compare our model to the effective potential that Koubaa

and Gasser [15] obtained from the ab initio model potential of

Bachelet, Hamann and Schlüter (B.H.S.) [16].

For the potential, the �ij and Aij parameters have in general been

determined by using the Lorenz-Berthelot interpolation rule:

�ij ¼
�ii þ �jj

2
Aij�ij ¼

Aii�ii þ Ajj�jj
2

"ij ¼
ffiffiffiffiffiffiffiffiffi
"ii"jj

p
: ð16Þ
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A strong chemical order necessarily transgresses the Lorentz–Berthelot

rule. It is clear that our double step model potential, if the parameters

are correctly adjusted on the true potential, includes most of the

chemical interaction. The correct choice of the parameters will be

discussed later.

3 EXPERIMENTAL SETUP

A complete description of the 7C2 spectrometer is given in [17].

We recall the main characteristics. The neutron beam section is

equal to 5
 2 cm2. The scattering wavevector is in the range from

0.3 to 16 Å�1; our experimental wavelength is 	 ffi 0:707 Å. The angu-

lar resolution and the number of cells are respectively equal to 0.2� and

FIGURE 1 Characteristic attractive effective potential determined from Bachelet–
Hamann–Schlüter (B.H.S.) pseudopotential calculations [15,16] (VAl–Al in Al50Ge50
liquid alloy) and double step model for modelling this potential.
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640. The highest neutron flux value is 2
 107 neutrons cm�2 s�1 at

	 ffi 0:707 Å. The different alloys have been elaborated with metals

of purity close to 99.999%.

We observed that manganese alloys sometimes react with silica cells

at high temperatures. We think that this is mainly due to the presence of

manganese oxide on the manganese flakes. In general, the presence of

oxide does not influence the experiment, a small skin of oxide floats at

the surface of the alloy but does not perturb the experiment. In our

case, we took a special care to select manganese flakes without oxide

and cleaned the flakes mechanically before preparing the alloy.

An ingot was prepared before, by melting manganese and antimony.

The alloy is cooled rapidly. The alloy is not homogenous. But

we obtain an ingot of the desired shape which can be sealed in the

silica cell.

FIGURE 2 Characteristic repulsive effective potential determined from Bachelet–
Hamann–Schlüter (B.H.S.) pseudopotential calculations [15,16] (VGe–Ge in Al50Ge50
liquid alloy) and double step model for modelling this potential.

560 B. GROSDIDIER et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
5
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



When the experiment begins, we first heat the cell with the metal at

the highest temperature possible. We take short spectra and follow the

vanishing of the Bragg peaks which is an indicator of the melting of the

alloy. We continue to measure short spectra (about 5–10 min). The 7C2

channel was monitored by a computer and a program written by the

local contacts allows making ratio of the successive spectra. If the

ratio is flat, it indicates that the liquid alloy is homogenous. At high

temperature (up to 1000�C) we observed sometimes the appearance

of a small peak in the ratio of spectra. This indicates that there is a

drift, probably due to a chemical reaction with the silica cell. At smaller

temperature this phenomenon does not occur but the alloy takes more

time to melt and to be homogenous. The measurements with samples

presenting this drift were rejected, or when the drift is very small we

continue the experiment at a lower temperature. The experiment con-

sists of several spectra at each temperature in order to have the desired

statistical error. The ratio of spectra was systematically done in order

to control the presence of an eventual drift. If no drift is observed

the different spectra are added.

We used amorphous silica cells to contain the liquid alloys. They

were placed in a vacuum furnace up to a temperature of 950�C. The

absolute normalisation was made by using a vanadium rod, which pre-

sents the same geometric characteristics than the sample (cylinder with

height and diameter respectively equal to 50 and 8mm). Bellissent [18]

has described the correction method for background, furnace, empty

container effects, self-absorption and multiple scattering contributions.

The neutron presents a magnetic interaction with manganese atoms

due to the spin. A magnetic correction must be made. So we used the

method of Ji-Chen Li et al. [19]. It consists in a subtraction of the para-

magnetic cross section given by the usual formula (Bacon [20]):

�pMnðqÞ ¼
8�

3
SðS þ 1Þ

e2�

mc2

� �2
f 2MðqÞ, ð17Þ

where fM(q) is the magnetic form factor for the unpaired electrons and

may be written:

fMðqÞ ¼ A expð�aq2Þ þ B expð�bq2Þ þ C: ð18Þ
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The parameters of the previous formula are given in Ji-Chen Li’s [19]

Table I. A good magnetic correction involves an experimental g(r)¼ 0

at r¼ 0. After the magnetic correction, the total error on S(q) is esti-

mated ffi 5% at q<3Å�1 and ffi 2% for q>3Å�1. This leads to a

total error equal to 10% on the total pair correlation function g(r).

4 RESULTS AND DISCUSSION

4.1 Structure of the Mn60Sb40 Zero alloy

4.1.1 Experiment and the Hard Sphere Model

4.1.1.1 The Hard Sphere Diameters are Held Constant in the

Alloy In Fig. 3, we present both the experimental and hard sphere

structure factors. For manganese, the hard sphere diameter �11 in

the alloy is taken to be that of pure manganese �1, which has been

FIGURE 3 Total structure factors obtained from the experiment and from hard
spheres for the Mn60Sb40 zero alloy at 950

�C. The hard sphere diameters are those of
the pure metals.
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deduced from the packing fraction and from the experimental density

of pure manganese. The packing fraction is given by Waseda [21] as a

function of temperature: �i¼Ai exp(�BiT) (the parametes Ai and Bi

have been tabulated in table 3-1 of Waseda’s book [21]). The density

is compiled by Crawley [22] as a function of temperature under the

form: di ¼ ai � biðT � TMiÞ, TMi is the melting temperature of the

ith pure metal. For antimony, the hard sphere diameter �22 has been

determined on our (unpublished) pure metal structure factor measure-

ments of antimony at 950�C [23]. Its temperature behaviour is deduced

from the Waseda formula. The value of the hard sphere diameters of

pure manganese and antimony are respectively: �Mn¼ 2.419 Å,

�Sb¼ 2.728 Å at 950�C and �Mn¼ 2.470 Å, �Sb¼ 2.766 Å at 800�C.

The hard sphere total structure factor is quasi-flat (Fig. 3). The small

remaining oscillations come from the difference between the hard

sphere diameters of antimony and manganese. The important experi-

mental peak at 1.775 Å�1 indicates a very strong chemical interaction

traducing heterocoordination. No peaks are observed at 2.175 and

2.800 Å�1 where are located the pure manganese and antimony main

peaks. This is in contradiction with most of the total structure factors,

which are obtained for alloys (where nevertheless in general both

metals present a positive neutron diffusion length). We have repre-

sented on Fig. 4 the Fourier transform (Eq. (7)) g11ðrÞ þ g22ðrÞ

�2g12ðrÞ, which traduces either the homocoordination or the hetero-

coordination. With hard spheres, we obtain above the first hard

sphere diameter �Mn ¼ 2:42 Å (Fig. 4) a positive peak. Near the

half distance (2.58 Å) between the hard sphere diameters �Mn and

�Sb, the 2g12(r) term gives a predominant negative peak. Then

above 2.86 Å the curve is quasi-flat. It is clear that the hard sphere

model with the hard sphere diameters of pure metals cannot

represent the experimental structure factor and pair correlation

function.

4.1.1.2 The Hard Sphere Diameters Vary with Concentration To

interpret our experimental structure factor, it is necessary to improve

the interatomic potentials. In the framework of the hard sphere model,

it is possible to consider that the hard sphere diameters are composi-

tion dependent. Physically this can be explained by a charge transfer
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from manganese to antimony. The zero alloy is particularly interest-

ing. Indeed Eq. (4) reduces to gtotðrÞ � 1 ¼ c1c2ðg11ðrÞ þ g22ðrÞ�

2 g12ðrÞÞ ¼ gccðrÞ=ðc1c2Þ which is the difference between homo and

heterocoordination. The effect of a modification of the interatomic

potential (of the hard sphere diameter presently) is easily seen on the

total structure factor (Fig. 5) and can be interpreted on the ðg11ðrÞþ

g22ðrÞ � 2g12ðrÞÞ curve, (Fig. 6). With normal alloys each effect is

hidden in the total gtot(r) which is weighted by the concentrations

and the neutron scattering lengths. With the zero alloy, we immedi-

ately see on the g(r)� 1 curve, the effect of moving the hard sphere dia-

meter or changing the height of the Silbert–Young square well. So we

can adjust the parameters of the potential on this curve and see

immediately the effects, what cannot be done with non-zero alloys.

The best fit on simultaneously the structure factor (Fig. 5) and the

pair correlation function (Fig. 6) is obtained with a manganese hard

sphere diameter in the alloy ð�11 ¼ �MnÞ of 1.85 Å and an antimony

FIGURE 4 Function g11(r)þ g22(r)� 2g12(r) obtained from the experiment and from
hard sphere potentials calculated for the Mn60Sb40 zero alloy at 950

�C (corresponds to
the Fig. 3 structure factors).
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diameter (�22¼ �Sb) of 3.21 Å. We choose �11 in order to obtain that

the increase of the calculated g11ðrÞ þ g22ðrÞ � 2g12ðrÞ function at r

equal to 1.85 Å corresponds to the experimental increase. We choose

a value of the parameter �12 so that the sharp decrease of the function

g11ðrÞ þ g22ðrÞ � 2g12ðrÞ occurs at the same r-value than the experimen-

tal function. The value of the antimony hard sphere diameter in the

alloy �22 is connected to �11 and �12 by the Lorentz-Berthelot rule:

2 � �12¼ �11þ �22. These changes represent respectively a variation of

24% for the manganese hard sphere diameter in the alloy compared

to the pure metal and of 18% for the antimony one. These variations

seem very important if one considers that the difference of electronega-

tivity between manganese and antimony is only equal to 0.4 (1.5 forMn

and 1.9 for Sb). Following the Sergent–Welch table of periodic proper-

ties of the elements, the ionic character of this alloy is only of 4% with

this difference of electronegativities. On Fig. 5, we observe that the

agreement between the experimental and calculated structure factors

FIGURE 5 Total structure factors obtained from the experiment and from hard
sphere potentials calculated with composition dependant hard sphere diameters for
the Mn60Sb40 zero alloy at 950

�C.
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is bad between 0 and 6 Å�1. The low angle limit of the structure factor is

very different from the experimental one. The agreement is only accep-

table on the second and third peak. Above we observe a shift between

the experimental and calculated extremes. On Fig. 6, we compared the

experimental and calculated g11ðrÞ þ g22ðrÞ � 2g12ðrÞ functions. The

agreement concerning the position of the sharp rises is good but the

calculation fails to realise the fit on the height of the different peaks.

We conclude that a hard sphere structure factor alone cannot represent

the experiment even if we take into account a drastic modification of

the hard sphere diameters with concentration. So it is necessary to

refine the model.

4.1.2 Experiment and Shouldered Models

We now come back to the possible shapes of the ab initio interatomic

potentials (Figs. 1 and 2). We can observe three regions: a sharp

FIGURE 6 Function g11(r)þ g22(r)� 2g12(r) obtained from the experiment and from
hard sphere potentials calculated with composition dependant hard sphere diameters for
the Mn60Sb40 zero alloy at 950

�C (corresponds to the Fig. 5 structure factors).
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repulsive potential for small values of r, an intermediate region, which

can be either attractive or repulsive, where we find the first nearest

neighbours, finally a decreasing oscillatory tail. Three degrees of

approximation have been used in order to represent as well as possible

the different shapes of the effective potential. In the first one,

the repulsive potential is described by the ‘‘hard sphere potential’’.

In the second one, the intermediate region can be characterised by

the Silbert–Young correction. In our third calculation, we proposed

to add a second contribution of the opposite sign as has been repre-

sented on Figs. 1 and 2. In this third model, we kept the hard

sphere diameters constant in the alloy (�ii¼ �i; �jj¼ �j).

4.1.2.1 Silbert–Young Potential with Concentration Dependent Hard

Sphere Diameters for Alloys In order to realise a better agreement

of S(q) and g(r) with experiment, we use Silbert–Young potentials.

The parameters AMn–Mn, AMn–Sb and ASb–Sb of the three effective

Silbert–Young potentials are determined in order to represent the

same drastic change as observed on the experimental g11ðrÞ þ g22ðrÞ�

2g12ðrÞ curve. The parameter "Mn–Mn has been determined in order

to adjust g11ðrÞ þ g22ðrÞ � 2g12ðrÞ between 1.85 and 2.53 Å where

the other partial pair correlation functions do not contribute. Then

we adjust simultaneously, "Mn–Sb and "Sb–Sb on the maximum of the

experimental structure factor (Fig. 7) and on the minimum of the

pair correlation function g11ðrÞ þ g22ðrÞ � 2g12ðrÞ (Fig. 8). The best

values that we obtained at 950�C are:

�Mn�Mn ¼ 1:85 Å �Sb�Sb ¼ 3:21 Å

�Mn�Sb

¼ ð�Mn�Mn þ �Sb�SbÞ=2

¼ 2:53 Å

"Mn�Mn=kBT ¼ 1:70 "Sb�Sb=kBT ¼ �0:20 "Mn�Sb=kBT ¼ �0:49

AMn�Mn ¼ 1:40 ASb�Sb ¼ 1:51 AMn�Sb ¼ 1:28

ð19Þ

We remark that the parameter "11 is positive (repulsion between

manganese atoms) and that both "12 and "22 are negative. The value

of the experimental low angle limit S(0) is nearly five times smaller

than the calculated one. The agreement is fairly well realised both in

CHEMICAL ORDER IN MnSb LIQUID ALLOYS 567

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
5
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



the real space and in the reciprocal space. On Fig. 9, we present the cor-

responding Faber–Ziman partial structure factors. We observe that the

important repulsive parameter of the Mn–Mn effective potential leads

to a split of the first main peak of a11(q). The attractive parameter Sb–

Sb andMn–Sb enhances the first peak to a value of 2.9 for Sb–Sb (com-

pared to 2.1 with hard spheres) and 2.0 forMn–Sb (compared to 1.6 for

hard sphere). We also observe a deep dip in the a12(q) partial structure

factor at 1.8 Å�1. The main peak of S(q) comes essentially from the

addition of the a22(q) main peak (maximum at 2.1 Å�1) and from the

negative a12(q) prepeak at 1.8 Å
�1 resulting from the attraction between

the two different species. The resulting total structure factor has a main

peak at 1.8 Å�1. We present on Fig. 10 the partial pair correlation

function (with an expanded scale) and their contribution to g11ðrÞþ

g22ðrÞ � 2g12ðrÞ. The total function obtained is near the experimental

one (Fig. 8) except for the sharp rise at the hard sphere diameters

which has to be softened. If one admits that there is a charge transfer,

FIGURE 7 Total structure factors obtained from the experiment and from the
Silbert–Young potentials with a variation of the hard sphere diameters for the
Mn60Sb40 zero alloy at 950

�C.
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it seems physically logical that the potential between identical atoms

(with the same electric charges) presents a repulsive contribution and

that it is attractive between unlike atoms. So it seems strange that

this fit leads to an attraction between antimony atoms. We can also

observe on Fig. 7 that the calculated structure factor is out of phase

with the experimental one at high q values. This means that the hard

sphere diameters are not adequately chosen. The variations of the

hard sphere diameters seem us too important if one considers the

small electronegativity difference. For all these reasons this model

which gives however an overall agreement, in the intermediate q

range, seems not to be adequate.

4.1.2.2 Double Step Potential with Concentration Independent Hard

Sphere Diameters Here we propose a model of potential (double step

potential) in order to take better into account the real shape of the

FIGURE 8 Function g11(r)þ g22(r)� 2g12(r) obtained from the experiment and from
Silbert–Young potentials calculated with a variation of the hard sphere diameters for the
Mn60Sb40 zero alloy at 950

�C (corresponds to the Fig. 7 structure factors).
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potential. From a physical point of view, we consider here that the

charge transfer is negligible and thus that the hard sphere diameters

in the alloy do not vary with concentration. This assumption was

supported by the fact that for large q (q>7Å�1) the hard sphere

structure factor represents well the experimental one (Fig. 3). The pro-

blem is now to choose the parameters of the double step potentials

"Mn–Mn, AMn–Mn, "
0
Mn–Mn, A

0
Mn–Mn, "Sb–Sb, ASb–Sb, "

0
Sb–Sb, A

0
Sb–Sb,

"Mn–Sb, AMn–Sb, "
0
Mn–Sb and A

0
Mn–Sb. We can be helped by the ordering

potential concept as has been discussed by Bhatia and Thornton [4].

The ordering effective potential is characterised by the difference

v11þ v22� 2v12. It is clear that we can obtain the same total structure

factor and total pair correlation function with different partial poten-

tials vij, which give the same ordering effective potential. But some

potential may be unphysical. For example, we have obtained very

good results on the total structure factor and the total pair correlation

FIGURE 9 Faber–Ziman partial structure factors aij(q) and Bhatia–Thornton partial
structure factor SCC(q) obtained from a Silbert–Young step potentials with a variation
of the hard sphere diameters for the Mn60Sb40 zero alloy at 950

�C (corresponds to the
Fig. 7 total structure factors).
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function by considering that the ordering potential which corresponds

to the measured SCC(q) and gCC(r), is only concentrated in a v12 con-

tribution and that v11 and v22 are hard sphere potentials. But the par-

tial structure factors are unphysical. For these reasons we split the

ordering potential half on a repulsive v11 and v22 effective potentials,

half on an attractive v12 potential. In order to reduce the number of

independent parameters to four, and to two hard spheres diameters

which are the same that for the pure metals, we introduced the follow-

ing relations and the parameters values at 950�C:

�Mn�Mn ¼ �Mn ¼ 2:42Å

�Sb�Sb ¼ �Sb ¼ 2:73Å ð�Mn�Sb ¼ ð�Mn�Mnþ�Sb�SbÞ=2¼ 2:58ÅÞ

"Mn�Mn=kBT ¼ "Sb�Sb=kBT ¼�"Mn�Sb=kBT ¼ 1:12

AMn�Mn ¼ASb�Sb ¼AMn�Sb ¼ 1:20

"0Mn�Mn=kBT ¼ "0Sb�Sb=kBT ¼�"0Mn�Sb=kBT ¼�0:20

A0
Mn�Mn ¼A0

Sb�Sb ¼A0
Mn�Sb ¼ 1:80

ð20Þ

FIGURE 10 Partial pair correlation functions obtained from Silbert–Young poten-
tials with a variation of the hard sphere diameters for the Mn60Sb40 zero alloy at 950

�C
(corresponds to the Fig. 8 total pair correlation functions).
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The total structure factor is represented in Fig. 11 while the total pair

correlation function is plotted in Fig. 12. The main peak of the struc-

ture factor as well as the oscillations at high q are very well represented

by this model with these parameters. The small angle limit is nearly the

same than the experimental one. The only difference occurs near

0.8 Å�1 where our model presents a hump. The g(r) curves are also

very similar and fit better the experimental curve than all previous

models. An important difference with the precedent model can be

noticed on Fig. 12 around 2 Å where in this case the positive value of

the experimental g(r) is not considered as having a physical meaning

but being an artefact of the Fourier transform of the experimental

structure factor.

We have plotted in Fig. 13 the Faber–Ziman double step potential

partial structure factors together with the total one. We observe the tra-

ditional main peaks, which have vanished in S(q)¼SCC(q)/(c1c2).

Theirs values are lower than 2.5 and are physically acceptable. Due

to the negative diffusion length of manganese, the partial structure

FIGURE 11 Total structure factors obtained from the experiment and from our dou-
ble step potentials for the Mn60Sb40 zero alloys at 950

�C.
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factor main peaks are cancelled by the linear combination of partial

structure factors and the prepeak is magnified. The remaining oscilla-

tions at high q value come from incomplete cancellation due to the

slightly different position of the peaks related to the different hard

sphere diameters. Sometimes one can observe some prepeaks on the

total structure factors as for example for Ni–Al or Ni–Al–Si [14]

where we have even used the Silbert–Young potential to explain quali-

tatively the prepeak. This is clearly observed on Fig. 13, where we

reproduce fairly well the main peak (which is in fact a magnified

prepeak).

Nevertheless we have a small shoulder on the left side of our calcu-

lated prepeak. This shoulder comes from the second step of our effec-

tive potentials. In the Fourier transform, it is clear that further steps of

the potential bring contributions which neutralise this hump.

In Fig. 12, we see that our model represents pretty well the first mini-

mum in the g11(r)þ g22(r)� 2g12(r) function, the maximum after is less

FIGURE 12 Function g11(r)þ g22(r)� 2g12(r) obtained from the experiment and
from our double step potentials for the Mn60Sb40 zero alloys at 950

�C (corresponds
to the Fig. 11 structure factors).
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accurately described but very much better than with hard spheres and

with earlier models. The experimental g11(r)þ g22(r)� 2g12(r) (Fig. 12)

is negative in the range 2.42–3.24 Å and shows clearly the heterocoor-

dination. The calculated curve obtained by the double step potential

presents two peaks, one positive the second negative. The first one is

located between �Mn and �Mn–Sb; the second one between �Mn–Sb and

�Sb. The calculated minimum value (� 6.85) of the function

g11(r)þ g22(r)� 2g12(r) is 1.22 below the experimental one (� 5.63).

These differences are due to the hardness of the hard sphere potential.

We can emphasise that they will vanish with smoother real effective

potentials. We have presented on Fig. 14 the different partial pair cor-

rection functions where we show clearly the different contributions and

the effects of the partial correlation functions gij(r) in the quantity

g11(r)þ g22(r)� 2g12(r). It can be seen that the g12(r) function weighted

by a factor� 2 is responsible of the deep minimum in the total function

FIGURE 13 Faber–Ziman partial structure factors aij(q) and Bhatia–Thornton par-
tial structure factor SCC(q) obtained from our double step potentials for the Mn60Sb40
zero alloy at 950�C (the hard sphere diameters are those of the pure metals).
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between 2.42 and 3.24 Å. This explains clearly the heterocoordination

of this alloy, which is due simultaneously to an attractive potential

between unlike atoms and a repulsive potential between identical

atoms. Of course, the remaining differences between the experimental

value and our calculated curve can perhaps even be improved. For

this, it is necessary to take into account a softer potential near the

hard sphere diameters and further oscillations of the interatomic

potentials. We believe however that the most important physical

contributions are included in the present calculation.

4.1.3 Discussion

With a zero alloy, the situation is different from classical alloys

because the main peaks are neutralised and that other parts of the

structure factor are magnified. If we return to the characteristic

shapes of the ab initio interatomic potentials that have been given in

FIGURE 14 Partial pair correlation functions obtained from our double step poten-
tials for the Mn60Sb40 zero alloy at 950

�C (corresponds to the Fig. 12 pair correlation
functions).
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Figs. 1 and 2, we observe that at large distances, the interatomic poten-

tials oscillate with decreasing amplitude. At small distance we have a

very important repulsive potential (hard sphere potential). At inter-

mediate distances we observe either an attractive potential (like for

Al–Al) or a repulsive one (like for Ge–Ge). The parameters have

been adjusted in order to obtain simultaneously a good total structure

factor (like in Fig. 11) and a good Fourier transform (like in Fig. 12).

The effects of the different contributions of the potentials are more

visible on Fig. 12 because we work in the same r space than the poten-

tial. It is clear on Fig. 13 that the main peak of the experimental struc-

ture factor comes from a combination of prepeaks of the Mn–Mn and

Sb–Sb partial structure factors and from a minimum of Mn–Sb partial

structure factor. All these peaks (positive or negative) are at the same q

value (ffi 1:8Å
�1
). The potentials of the Figs. 1 and 2 have been

obtained for normal metals. But the pseudopotentials are inadequate

to describe transition metal alloys and cannot be used for the

Mn–Sb alloy. Hafner et al. [12] obtained realistic total structure fac-

tors with a mean Yukawa potential for the liquid alloy (using the

ordering potential concept). This shows that one can obtain a good

total structure factor if the difference between identical ii or jj interac-

tions and unlike ij interaction is correct. We have obtained a very good

total structure factor (results not presented here) with a very simpler

assumption i.e., by taking hard spheres for ii or jj interactions and a

square well attractive potential only for the ij interatomic potential.

This needs only four independent parameters (�1, �2, A12 and "12).

In that case the partial structure factors are not realistic because the

depth of the attractive well potential is too important. The partial

structure factors which have a height of their main peak of about 5

are not physically acceptable. This kind of discussion can only be

held if the partial structure factors are plotted! In the present work,

we prefer replace the important attractive potential ij by a less attrac-

tive ij interaction and repulsive ii and jj contributions which seems us

more physical. More accurate fits can only be obtained if one has more

experimental information (for example if one has experimental partial

structure factors).

We have seen that two very different models can explain nearly as

well the intermediate range of the experimental structure factor. The

low and high q limits are better reproduced with constant hard
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sphere diameters. The hump in the 0.5–0.8 Å�1 range obtained with the

double step potential is not observed experimentally. A careful analysis

shows that this hump comes from the second square well contribution,

which may be corrected by higher oscillations of the potential.

The problem is to examine what is the more realistic situation and to

appeal to other physical properties than structural ones. In the charge

transfer situation, a good result is obtained with a very important

change of the hard sphere diameters (except for low and high q

values where the calculated structure factors are out of phase). The dif-

ference in the electronegativity (0.4) is small and it seems us improbable

that we have an ionic situation in the alloy. The experimental resistivity

(250 m� cm) is not characteristic of an ionic conductivity. We do not
believe to an important charge transfer for the manganese antimony

alloy.

4.2 Structure Factor of Mn40Sb60

We measured also the structure factor of Mn40Sb60 at 800
�C (Fig. 15)

which is no more a zero alloy. We have observed an increasing of the

midheight width of the structure factor main peak (midheight width

0.54 Å�1 for Mn40Sb60 and 0.33 Å�1 for Mn60Sb40 at 950
�C). We

have calculated the total structure factor with all models described

before. Figure 15 shows the hard sphere and the double step potential

structure factors with concentration independent hard sphere dia-

meters. The hard sphere diameters have been changed in order to

take into account their temperature dependence (�Mn¼ 2.47 and

�Sb¼ 2.77 Å). The hard sphere potential main peak appears at

2.35 Å�1 for the hard sphere potential while for the experiment it is

observed at 1.9 Å�1. The double step potential represents well the

oscillatory behaviour of the structure factor and gives the good

main peak width but overestimate a little its values.

The calculation with concentration dependent hard sphere diameters

is presented on Fig. 16. We only change the hard sphere diameters by

fitting on the experimental S(q). We obtain with less accuracy the

value �Mn¼ 2.0 and �Sb¼ 3.0 Å. With these values we represented

well the oscillatory behaviour of the structure factor. They

correspond respectively to variations equal to 19 and 10% of the
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FIGURE 15 Experimental, hard sphere and double step total structure factors for the
Mn40Sb60 at 800

�C with pure metal hard sphere diameters.

FIGURE 16 Experimental, hard sphere and Silbert–Young total structure factors for
the Mn60Sb40 at 800

�C with variation of the hard sphere diameters.
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hard sphere diameters. These variations are less important than those

of Mn60Sb40 alloy. In this model, the ‘‘chemical effect’’ is less pro-

nounced for this concentration in spite of a lower temperature. The

other parameters are the same than those used for Mn40Sb60. There

is a pretty good agreement between the experiment and the structure

factor calculated from the Silbert–Young potential with a diameter

change. However, the same physical arguments than for the

Mn60Sb40 zero alloy can be used (electronic transport properties and

repulsive antimony–antimony repulsive potential) to prefer the

double step potential with constant hard sphere diameters.

5 CONCLUSION

In this paper, we have presented experimental results of neutrons

scattering on molten manganese–antimony alloys. The null matrix

method allowed us to observe directly a strong chemical order. We

have discussed different models to interpret the experimental structure

factor. It is clear that the hard sphere potential cannot explain the

structure even with concentration dependent hard sphere diameters.

The intermediate q range can be explained nearly as well either by a

‘‘Silbert–Young’’ potential (first model with a change in hard sphere

diameters on alloying) or by an attractive potential between unlike

ions described by our ‘‘double step’’ potential with concentration inde-

pendent hard sphere diameters. The nature of the alloy is very differ-

ent in the two cases. In the first model, it is not reasonable to accept

physically the attraction of the antimony–antimony effective potential

and the high q oscillations are not reproduced. The ionic character,

corresponding to a charge transfer model, is not described in the elec-

tronic transport properties. Finally, we have concluded that the varia-

tion of the hard sphere diameters must be very small and that it exist

an attraction between unlike atoms and repulsion between identical

atoms (heterocoordination). This explains well the experimental

results and corresponds also to a better understanding of the

physics of such alloys. Good results are also obtained for Mn40Sb60
and show the coherence of this interpretation.

We hope than further theoretical work in this field with effective

potentials obtained from transition metal pseudopotentials will be
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able to describe our experimental structure factor with an ab initio

formalism.
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